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ABSTRACT 

We expose a consistent theory for dealing with transport 

phenomena in many astrophysical conditions. The present paper 

gives a more general frame to the classical radiative transfer 

theory and some particle transport phenomena. We start with the 

kinetic equations and introduce three cases: LTE, partial LTE 

(usually called non-LTE), and non-LTE (or fully non-LTE). 

We present the fully consistent equations for partial LTE, 

and define the transport coefficients (which also hold for LTE) 

and show a method for calculating these coefficients as well as 

their validity range. The method is based on a numerical 

solution of the kinetic equations considering Landau, Roltzmann 

and Focker-Planck collision terms. 
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I. Introduction 

Radiation transport has been thoroughly treated since the 

beqinning of astrophysical research, as can be seen in, e.g,, 

Athay (1972) and Mihalas (19781, but as a subject independent of 

matter transport and assuming that particles follow a Maxwellian 

distribution, 

On the other hand particle transport phenomena have been 

studied without considering t h e  radiation. Two different 

situations have been considered, the first corresponds to cases 

where particle distribution functions are very close to Maxwell's 

function and the second to the case where non-local effects 

dominate the distributions. 

The particle transport for small departures from Maxwellian 

distribution has been analyzed by several authors. The early 

work by Chapman, Enskog and Burnett (hereafter CHEB) as discussed 

by Chapman and Cowling (1936, hereafter CC1, led to a complete 

compilation of transport coefficients, definitions and 

calculation methods very useful1 for atomic and molecular 

gases. Their apDroach is based on expansion of the distribution 

functions in the vicinity of the Maxwell distribution function, 

then, they retain only the first term in that expansion and in 

turn expand again that first order term f 1 in Laguerre 

polinomials up to some order N. An application of the CC methods 

to mixtures of gases without considering radiation, is due to 

Devoto (1966). 

The CHEB method has also been applied to ionized gases, by 

Braqinskii (19651, but that case requires expansions up to at 
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least second order (N=2). The CHEB method was also aplied by 

Hochestim (1967) to magnetized plasmas by using expansion up to 

order 20. 

As an alternative method for calculating the first order 

departure from Maxwellian distribution, Spitzer and Harm (1953, 

hereafter SH) have calculated, (in the case of a gas composed of 

electrons and one ionic species), not only the transport 

coefficients, but also the detailed shape of the distributions 

function, by a numerical method without restrictions to a 

truncated polynomial expansion. 

The results by SH have been used extensively in several 

fields of physics and also show the limits of validity of the 

first order distribution function approach. Those results led to 

the analytical approach of Shvarts et al. (1981) for calculating 

flux limit coefficients which have been qualitatively confirmed 

by experiments. Also an analytical approach was applied by 

Campbell (1984) for very simplified cases. 

An approach which fits the capabilities of modern 

"supercomputers" has been suqqested by Fontenla ( 1985) showinq 

how one can define a set of transport coefficients and calculate 

them by numerical methods. A similar method has been used by 

EDperlein and Haines (1986) for a fully ionized qas with magnetic 

field. 

We also mention papers relating to particle transport case 

where non-local effects are very important. In that catheqory 

the paper by Luciani, Mora and Pellat (1985) assumes a very 

simplified kinetic equation and presents an approach to some non- 
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localized heat flux which arises when the transport becomes non- 

local. Calculations of non-local effects have likewise been 

carried out by Roussell-Dupree (19801, Shoub (1983) and by Owocki 

and Canfield (1986) for the solar transition region. 

In the present paper we show the full set of kinetic 

equations which have to be considered for a consistent treatement 

of both radiation and particle transport phenomena. From these 

equations we derive a set of hydrodynamic equations for particles 

without any apriori assumption regarding the radiation field or 

the distribution functions. 

We characterize some different regimes and also define and 

explain the definitions of some transport coefficients. The 

basis of the numerical method for calculating these transport 

coefficients is explained. Then, we show some results in a 

simple case and compare with the previously mentioned papers. 
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11. The Kinet i c  Eauations 

Followinq the Ehler and Kohler (1977) formalism, and 

assuminq that all the reauirements related to statistics are 

satisfied, we describe the macroscopic system by the one particle 

distribution function f o r  each of the present species (a). 

We consider the phase space composed of the four dimensional 

coordinates (x,y,z,ict) and the four dimensional momenta 5 
(px,py,p,,iE/c) where i is the imaginary numbers unit, c the 

velocity of liqht, E the total energy; and the other variables 

have the usual meaning. 

and €or photons = 0. Hence, the impulse have only three 

independent variables. 

For a particle of rest mass m, 1st = imc 

Followinq Ehler and Kohler we write the volume measure in 

orbital phase for particles of given rest mass 

-b 1 

where do is an space-time surface element, and dr the volume 

element in four momentum space for that particle. Then, 

We have assumed a gas of particles which are essentially 

free: i.e., interactions between them are short-lived compared to 

the time between such interactions (small range interactions). 

The particles are subject to a general field which can include 

the autoconsistent field. In the case of plasmas, there is also 



some p e r m a n e n t  i n t e r a c t i o n  between p a r t i c l e s ,  b u t  t o  t h e  e x t e n t  

t h i s  is smal l  compared t o  t h e  k i n e t i c  e n e r g y  of t h e  par t ic les ,  it 

o n l y  a f f e c t s  t h e  s p a t i a l  dependence  of t h e  d i s t r i b u t i o n  f u n c t i o n  

( l e a d i n g  t o  Debye s c r e e n i n g )  and t h e n  d o e s  n o t  a f f e c t  t h e  p r e s e n t  

w o r k  ( f o r  more d e t a i l s  see e.g., B a l e s c u ,  1 9 7 5 ) .  

A c c o r d i n g  t o  o u r  d e f i n i t i o n s  and  a s s u m i n g  summat ion  over  

repeated i n d i c e s ,  w e  h a v e  t h e  d e f i n i t i o n  of t h e  d i s t r i b u t i o n  

f u n c t i o n  f '  a c c o r d i n g  t o  

where  t h e  i n t e q r a l  o v e r  means i n t e g r a t i o n  o v e r  t h e  whole  

momentum s p a c e ,  N b e i n g  t h e  n u m b e r  of p a r t i c l e  t r a j ec to r i e s  which  

cross  t h e  s u r f a c e  C ,  and  3 t h e  f o u r - v e c t o r  c u r r e n t  d e n s i t y  of t h e  

species. Then i f  n u  is t h e  volume d e n s i t y  of t h e  species a 

R e d e f i n i n g  f' and d n '  i n  o rder  t o  w o r k  w i t h  t h e  s t a t e  

o c c u p a t i o n  numbers  and  t h e  s t a t e  d e n s i t i e s ,  w e  w r i t e  

r e s u l t i n g  i n  
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where w is the multiplicity of the state, and h Planck's 

constant: Then, 

for particles 

and for photons 

where S is the spin, 8 the velocity in units of the velocity of 

light, y the relativistic correction y = (1 - 82)-1'2and 8 

and 4 the spherical angles which define the direction of the 

vector 6 in the three dimensional space: u = cos 8 is the 

projection factor alonq the z axis and v the photon frequency. 

The quantity vo represents an arbitrary frequency taken to 

dimensionalize the variable. 

The force is assumed to include gravitational and Lorentz 

terms 

+ 
('p I%] f 

- = [ - q + , E + -  F m +  Z e +  Ze 
Tnc y C C 2 (7) 

where 9' is the gravitational acceleration, 8 and 8 the electric 
and magnetic fields,respectively, e the proton charge and 2 the 

charge of particle in units of e. 

The Liouville equations (see Ehlers and Kohler 1977) take 

the form in the case of special relativity f o r  particles 



and for photons 
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where indicates the unit vector in the direction of the impulse 

and ni its components, 5 is the collision density for the 

particles considered ( F  is the invariant collision density) and 

we use (as in the following) the convention of summation over 

repeated indices. 

Equation ( 9 )  applies to cases where the sDace and time 

variations of the distribution functions are neqliqible throuqh 

the range of the forces between particles responsihile of the 

collision terms. Another condition required in this approach is 

that all fields ( 6 ,  
collisions, i.e., they do not produce any noticeable chanqe in 

particle impulse during the duration of a collision. 

and 8 )  are small enouqh not to affect the 

We remark that the collision densities just mentioned are 

the sum of all the collision terms between a particle within one 

phase space cell (according to the quantum mechanical definition 

of states) with all other particles, even those of the same 

species. Then these collision densities are integral nonlinear 

functions of the distribution functions. 

Considering the terms which can be expressed in the 

Roltzmann form, for a species with a certain value of the impulse 

(within a cell of phase space), namely A, they can be expresed as 

a source term which does not depend on fA, but depends on the 

other particle (or photon) distribution functions f,, fC, etc., 

and a sink term which is proportional to fA, so that 



1 0  

5,  - - nA - x A ~ A  9 

F o l l o w i n g  E h l e r s  and K o h l e r ,  w e  a d o p t  t h e  d e f i n i t i o n s  

f o r  bosons A f A = l + f  

( 1 0 )  

f o r  f e r m i o n s .  

T h e n ,  for col l i s ions  between a p a r t i c l e  A and a p a r t i c l e  B ,  

w h i c h  r e s u l t  i n  t h e  emission of  p a r t i c l e s  C a n d  D ( b i n a r y  

c o l I i s i o n s ) ,  where d u  = u d p  d + ,  is t h e  d i f f e r e n t i a l  cross- 

s e c t i o n  i n  t h e  i n e r t i a l  f rame,  w e  h a v e  

B 
rlA = 11 f C f D  f BAB du dng* , 

The minus  s i g n  h o l d s  when A ' s  a re  b o s o n s ,  and  t h e  p l u s  s i g n  when 

t h e y  a r e  f e r m i o n s .  

a n d  K o h l e r ' s  d e f i n i t i o n  of PAB, i .e .  

The e x p r e s s i o n  f o r  BAB is  d e r i v e d  f rom E h l e r s  

v2 ( 1 3 )  BAB = (0, + BB - 20 B cos  eAB - B B s i n  eAB)  , 2 2  2 2 2 
A B  A B  

w h e r e  eAB is t h e  a n g l e  between $A and 

a l so  v a l i d  when one  of t h e  p a r t i c l e s  is a p h o t o n ,  i n  wh ich  case 

t h e  c o r r e s p o n d i n g  BA, w i l l  be u n i t y .  

T h i s  e x p r e s s i o n  is 
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For the conditions prevailinq in m-ny astrophysical 

situations degeneracy is negliqible and fA = 1 for particles. 

This simplifies slightly some equations, and if required, the 

equations below can be modified to account for degeneracy. 

The above considerations regardinq Boltzmann collision terms 

hold for both elastic and inelastic collisions. Boltzmann type 

terms can also account for collisions involving many incident 

and/or resultant particles or photons, as for instance 

collisional ionization and recombination. 

In the case of elastic, binary collisions, if only small 

changes in the particles imwlses occur after the collision, the 

Roltzmann term is not suitable €or numerical calculations, since 

it involves a large extent of numerical cancellation between the 

source and sink terms. 

For instance, when a particle A underqoes a collision with a 

much liqhter particle B or with a photon of moderate freauency 

(frequency much smaller than the Compton frequency) the impulse 

of particle A changes by only a small amount. The source and 

sink terms in the Boltzmann term can be expanded and we obtain 

the Focker-Planck collision term (see Ralescu 1975), viz. 

where 

D fg dPg* i 2 V 
<APi> = - r m A c  1 B,, 

BAB. B A B  
<APiAP.> = m2Ac2 BAB 3 [A 6ij + (B - A )  1 j] fgdrB*  , 

3 
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a n d  t h e  c o e f f i c i e n t s  D,  A ,  and B are  g i v e n  by t h e  e x p r e s s i o n s :  

Here u ' d p ' d e '  is t h e  d i f f e r e n t i a l  cross s e c t i o n  i n  t h e  c e n t e r  o f  

mass c o o r d i n a t e  s y s t e m  ( i f  one o f  t h e  species is a p h o t o n ,  t h e  

rest f r a m e  o f  t h e  p a r t i c l e  is t h e  r e f e r e n c e  s y s t e m ) ,  and  6 i j  is  

t h e  K r o n e c k e r  d e l t a .  

The case o f  c h a r g e d  par t ic les  i n v o l v e s  c o l l i s i o n s  where n o t  

o n l y  t h e  i m p u l s e  o f  p a r t i c l e  A b u t  a l s o  t h a t  of p a r t i c l e  B 

c h a n g e s  s l i g h t l y  as a r e s u l t  of t h e  c o l l i s i o n .  T h i s  case is 

p a r t i c u l a r l y  i m p o r t a n t  f o r  Coulomb type forces  s i n c e  f o r  t h e m  t h e  

c r o s s - s e c t i o n  d i v e r g e s  when t h e  d e v i a t i o n  a n g l e  goes t o  zero,  and  

t h i s  k i n d  of c o l l i s i o n s  dominate  i n  normal  plasmas. 

F o r  Coulomb c o l l i s i o n s  we u s e  t h e  Landau ( 1 9 3 6 )  form of t h e  

F o c k e r - P l a n c k  c o l l i s i o n  term as  shown i n  Balescu ( 1 9 7 5 1 ,  i .e .  

w i t h  

B A B ~ ~ A B .  

B~~ 
' I  2 2  G~~ = m A c  [ ~ a ~ ~  + ( B - A )  2 ( 1 6 )  



The e x p r e s s i o n  f o r  d e r i v a t i v e s  w i t h  respect t o  t h e  

componen t s  of i m p u l s e  c a n  be o b t a i n e d  f r o m  t h e  e x p r e s s i o n  

is t h e  Kronecke r  d e l t a  and  n i  a re  t h e  components  o f  t h e  
where ' i j  
u n i t  vector i n  t h e  d i r e c t i o n  of 6. 

By i n c l u d i n g  t h e  e x p l i c i t  f o r m u l a  f o r  t h e  c o l l i s i o n  t e r m s  w e  

f i n d  

( 1 8 )  
a f  - - + - - -  1 af  F i a f  - ~ + D f - x f - $ ~ a p i t  a f  

'"i.7- c a t  c api 

w h e r e  

a<AP.>  a~~~ a f g  
x = C [ x +  a p  J +I-- d*B*] f 

j B 

* a G i j  * 
d r B  - I f B d n B l  f 

a <APiAP. > 
1 3 

j 
= C [CAPi> - 3 

'i 
j 

<APiAP. > * a n d  $ i j  = C [.- 7 + I GijfgdrB] . 
B 

T h e s e  e q u a t i o n s  d e s c r i b e  t h e  t r a n s p o r t  of p a r t i c l e s  and  

r a d i a t i o n  a n d  t a k e  i n t o  a c c o u n t  t h e  f u l l  i n t e r a c t i o n  be tween  

mat ter  and  r a d i a t i o n  i n  a s t r o p h y s i c a l  problems, d e a l i n g  w i t h  
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medium density gases like the ones that form the stellar 

atmospheres. 

One of these equations can be simplified for problems where 

the photon flight time over a characteristic length is small 

compared to the characteristic times for variations of physical 

parameters. In the latter case one can neglect the accumulation 

of photons in regions of space and drop the term (l/c)((af/at), 

recovering the ususal radiation transport equation (Athay, 1972). 

The basic kinetic equations can also be obtained from the 

BRGKY chain of equations by applying statistical assumptions (see 

Balescu 1975). 

._. 
:: 



111, The Hydrodynamic Equations 

These equations can be derived from the moments of the 

kinetic equations (18) considering only particles (i.e., 

excludinq radiation), and differ from some others which include 

radiation in the moments of the kinetic equations (see for 

example Anderson, 1976)- The reason f o r  the present formulation 

lies in the fact that for most cases in stellar atmospheres the 

radiation spectrum has to be solved in detail, and its agreement 

with observations is the main goal. 

We define the moments of the collision term 5, f o r  the a 

particles by 

where dna is the impulse phase-space volume element, ma is the 

mass of particles of species a, and f is the velocity. 

With these definitions, the statistical eauilibrium 

equations become 

where na is the number density of a particles, $a their diffusion 

velocity, 6 the fluid velocity (mass center velocity), and Ra is 
the net rate of creation of a particles per volume unit, 

Since mass is conserved in all collisions, the usual mass 

conservation equation holds, i.e. 



where  p is t h e  mass d e n s i t y .  

T a k i n g  t h e  f i r s t  moment of t h e  k i n e t i c  e q u a t i o n s  w e  f i n d  

w h e r e  

= n m  a a '  
$ = z $  , p a  

+ 
a F = C P a a a  , 

a a 

and ga is t h e  a c c e l e r a t i o n  e x p e r i n c e d  by a n  a p a r t i c l e  d u e  t o  a l l  

e x t e r n a l  ( o r  a u t o c o n s i s t e n t )  f i e l d s .  3 is t h e  n e t  g a i n  of 

p a r t i c l e  i m p u l s e  per volume u n i t  due  t o  i n e l a s t i c  c o l l i s i o n s  w i t h  

p h o t o n s ,  The l a s t  q u a n t i t y  e q u a l s  t h e  n e t  loss  of p h o t o n  i m p u l s e  

and  c a n  b e  e x p r e s s e d  i n  terms of t h e  c o l l i s i o n a l  t e r m  f o r  

r a d i a t i o n  

w h e r e  c is t h e  speed of l i q h t ,  K,,, I,, and  E,, have  t h e i r  u s u a l  

mean ing  of a b s o r p t i o n  c o e f f i c i e n t ,  i n t e n s i t y  and  e m i s s i v i t y  of 

r a d i a t i o n  a t  f r e q u e n c y  u and w i t h  d i r e c t i o n  A ,  and dw is t h e  

s o l i d  a n q l e  e l e m e n t .  

As ment ioned  b e f o r e ,  when t h e  p h o t o n  f l i g h t  t i m e  o v e r  a 

c h a r a c t e r i s t i c  l e n g t h  is small, t h e  k i n e t i c  e q u a t i o n  f o r  p h o t o n s  

g i v e s  



+ +  = L V n n Iu dw du , C 
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1 + +  where  1 n n I,, dw dv  t h e  r a d i a t i o n  p r e s s u r e  t e n s o r .  

The t e n s o r  ? c o n t a i n s  t h e  p r e s s u r e  p ,  t h e  v i s c o u s  

stress f ( o f  n u l l  t r a c e ) ,  and t h e  terms d u e  t o  d i f f u s i o n ,  v i z .  

where 

1 + +  P = C p a r  p a  = 7 T r  1 maw w f a d n a ;  
a 

a n d  

w i t h  t h e  d e f i n i t i o n  

a u t h o r s  d r o p  t h e  l a s t  term because  it is a u a d r a t i c  i n  Va. 

= t - (6 + f a ) .  I n  e q u a t i o n  ( 2 6 )  many 

The k i n e t i c  energy  e q u a t i o n  f o r  t h e  g a s  i s  

2 
3 + p a  'a T ) ]  + ( ; -v )  6 + V * ( C  $a) + ( 2 7 )  + v [ C  $,'z Pa 

a a 

+ € - - t - $ ,  + + + + V - q  = C p a  aa- V a  
a 

+ + 
w i t h  E = C ea, q = C Ga and where qa is t h e  c o n d u c t i v e  e n e r g y  

a a 
f l u x  for a p a r t i c l e s ,  g i v e n  by 



2 + + W = w m - f dna.  ' a  a 2 a  ( 2 8 )  

T h i s  d e f i n i t i o n  of c o n d u c t i v e  f l u x  agrees w i t h  t h e  o n e  from 

CC s i n c e  it does n o t  c o n t a i n  t h e  t h e r m a l  e n e r g y  f l u x  d u e  t o  

d i f  f u s i o n  

- - V + 3  a c [ V a ( Z  Pa + P a  7) + = a  G a l  I 

a 

up  t o  f i r s t  o r d e r  i n  Ga and  P .  or  c ba 7 'a a 
T h e  t e r m  8 is f r e q u e n t l y  dropped f o r  n o n - r e l a t i v i s t i c  

cases.  A g a i n ,  t h e  cond i t ion  f o r  e n e r g y  b a l a n c e  i n  c o l l i s i o n s  

q i v e s  

w h e r e  E a  is t h e  i n t e r n a l  e n e r g y  p e r  a par t i c l e .  

T h e r e  r e s u l t s  t h e n  

a n a  + + 
E = -  C E [- + V*(n V ) + V*(naU)]  + 1 ( ~ ~ 1 ,  - E,,) dw dw . a a t  a a  a 

B y  u s i n q  t h e  p r e v i o u s  e q u a t i o n s  o n e  c a n  e a s i l y  t r a n s f o r m  t h e  

t h e r m a l  e n e r g y  e q u a t i o n  i n t o  t h e  e n t a l p y  e q u a t i o n .  
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IV. Different Regimes 

In principle, the system of eqs. (18) (in the following 

referred to as KE) must be solved simultaneously for all 

particles and radiation with specific boundary and initial 

conditions which define the problem under consideration. 

Furthermore, these equations have to be complemented with 

Maxwell's and gravitational field equations. 

An inspection of the KE formulas shows that their riqht hand 

member (hereafter RHM) contains only local terms: i.e., the terms 

in RHM depend only on the values of the distribution functions at 

the specific space-time coordinates, and the terms in the left 

hand member (hereafter L H M )  depend on the values of the 

distribution functions at other space-time coordinates (non- 

local). 

The latter terms lead to the definition of the local 

thermodynamic equilibrium regime (LTE). This is, when the 

absolute value of all the terms in the LHM of all the KE 

equations are much smaller than the absolute value of the 

dominant terms in the corresponding RHM. In LTE situation, then, 

there is a stronq cancellation between RHM terms, and the 

distributions become mainly locally defined by some thermodynamic 

equilibrium functions F (those which null the RHM) of some 

thermodynamic parameters (TP). 

One complete set of TP is given by (n, 6 ,  T,A) where n is 
the total particle density, f the fluid velocity, T the 
temperature, and A the set of independent abundances of the 

species. 
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The case of LTE without considering radiation is analyzed in 

many text books which define the hydrodynamic equations (the 

equations which define the TP values as functions of space-time 

coordinates). In particular, Chapman and Cowling (CC) show the 

definitions of some transport coefficients and a method for 

calculating them. The case of a gas including radiation has been 

treated by Anderson (1976) showing some transport coefficients 

for a very simplified case. 

On the other hand, when in all KE eqs. the RHM terms are at 

most of the order of magnitude of the LHM terms, we have what we 

call non-LTE (or fully non-LTE). In this case one has to use 

different approaches for solvinq the KE eqs. (e.g., Rousell- 

Dupree (19801, Shoub (1983) and Owocki and Canfield (1986). In 

non-LTE cases one can use the hydrodynamic equations ( 2 0 )  to (30) 

and define the parameters 6, p and T, but they do not have the 

general meaning they have in LTE, and they are useful only €or 

correcting and checking consistency and errors in numerical 

methods. 

In the non-LTE case the shape of the distribution functions 

is defined mainly by the boundary and initial conditions (i.e. 

non-locally defined). 

Between the two extreme cases there is a wide ranqe of 

intermediate cases, which cannot be treated like in LTE, but are 

far easier to solve than the non-LTE cases. This ranqe has been 

considered for instance by Rraqinskii (1965) who showed that 

sometimes the shape of the distribution functions for different 

species can be close to the equilibrium function, but with 
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different values of the TP for each species. This situation has 

also been considered by Nakagawa and Wu (1968) who included 

radiation . 
We shall define a special case in this intermediate range 

and call it partial thermodynamic equilibrtium (p-LTE). Our 

definition results from considering the elastic collision terms 

in the KE eqs. for certain particles. If these terms are much 

larqer than the corresoonding terms in the LHM and RHM, the 

distribution functions €or these particles (thermal particles) 

are close to some equilibrium functions. We can then take the 

moments of KE eqs. ,integrate them and perform the summation over 

the different species leading to the hydrodynamic equations 

described in eqs. (20) to (30). The latter equations in 

conjuction with the KE eqs. for the particles not included in the 

former (non-thermal particles) and photons constitute a complete 

set of equations (if the transport terms ($a, P, 6 )  
hydrodynamic equations are known). 

in the 

We want to stress that while all particle species have 

elastic collisions with the same and other species, photons do 

not interact with themselves and their relaxation towards the 

equilibrium distribution function (or thermalization) is due to 

nhoton-particle interactions (which are inelastic collisions). 

In many astrophysical situations the collision terms in the 

photons kinetic equations are not much larger than the 

corresponding LHM terms. Moreover, frequently in eqs. KE for 

particles, the order of magnitude of the LHM terms lies between 

those of elastic collisions (usually the largest) and inelastic 
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collisions (the latter being the responsible for relaxation 

towards Saha-Botzmann equilibrium). 

The former constitutes a typical p-LTE case, where one can 

assume that the shape of particle distribution functions are 

close to Maxwellian, due to the stronq cancellation of elastic 

collisions terms. However, the species densities do not follow 

the Saha-Boltzmann formula and the radiation do not follow the 

Planck formula. 

We write for the thermal Darticles 

2 
- "a + Eaj}-l t (31) fa Ma - K 

mc ( y '  - 1) - Fixi 
kT + em[ 

where k is the Boltzmann constant, K a normalization factor, and 

y '  the Lorentz factor in the fluid frame (with velocity 6). The 
minus sign holds for bosons, and the plus sign for fermions. 

One additional advantage of the p-LTE formulation is that 

even the equations which one cannot include in the hydrodynamical 

eqs., become simpler, since in their RHM the larqer terms are 

more or less simple functions of the TP instead of complicated 

nonlinear integrals. An example is the radiation transport 

equations, where the source term (photon emissivity) and the sink 

term (absorption coefficient) assume relatively simple 

exDress ions. 
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V. The Transport Coefficients 

Some terms which appear in the hydrodynamic eauations (20) 

thru (30) are related to the fluxes of particles and particle 

impulses and energies (nafa, Fa, in the fluid rest frame. 

These terms, as their definitions show, arise due to the 

- 

anisotropy of the distribution functions. In the p-LTE case, for 

the thermal particles the fluxes are produced by the departure of 

the distribution functions from a maxwellian shape. Those 

departures (6f) are complicated functions of the LHM of the KE 

eqs. for the thermal particles, and the collisions with the non- 

thermal particles and photons. The moments of the functions 6 f  

or the terms ( f a ,  Fa,  G a l  can be tabulated for different 

conditions and interpolated for solvinq the actual problems. 

We attempt to show a general method for calculating 6f in p- 

LTE situations by using an iterative numerical scheme. The 

method consists in the application of the multidimensional 

Newton-Raphson numerical technique (hereafter NR) to the KE. We 

also suggest that this method might be applied €or solving some 

non-LTE problems, since in many cases this method is successful 

in calculating the solutions of non-linear eauations. However, 

the converqence of the method is not assured in general, and the 

method should be explored further to show its possible usefulness 

in solving KE eqs. for typical situations. 

In the p-LTE case, it is straightforward to show that the 

Newton-Raphson technique (by using the maxwellians M a  as starting 

point) applied to KE coincides with the analytical expansion and 

iterative calculation from CHEB (see CC) for LTE situations. 
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There are two possibilities for the application of NR to the 

p-LTE case. The first is to consider RE eqs. only for thermal 

particles and assume as qiven the distribution functions of non- 

thermal particles and photons (fS). We will use here the second 

approach of solvinq the KE eqs. for all the particles and 

photons, assuminq as known, the LHM of all those equations. 

As a startinq point we take as qiven the set of functions 

M a  for the thermal species, as well as some distribution 

functions fS f o r  the other species (including photons). 

latter functions are supposed to satisfy their respective KE eqs. 

with the qiven M o l .  

The 

We first obtain the distribution function fi up to iteration 

i (equivalent to order i in the CHEB expansion) and then the next 

correction 6fi is computed by linearizing the RHM again. 

Of,-5,-- i i -  a SA + -  a e: 6f$ = A i i  6f 
a fA a fB 

(32) 

where a summation over all kind of particles or photons B is 

implied and 5, is the RHM of the KE eqs, and A is a matrix 

operator. By inverting these equations one can calculate the 

functions 6fi and f i + 1 = fi + 

The first iteration in the former procedure shows a solution 

for 6fi which is a linear function of the thermodynamic forces 

(in the following TF). We mention that due to the enormous 

complication of the CHEB analytical equations, at present they 

have only been applied to first,order (equivalent to our first 
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iteration). In contrast, the present numerical technique can 

easily be applied to higher orders leadinq to functions 6f (and 

hence fa, Fa, and G a l  which are non linear functions of the TF 

and the derivatives of the TF. 

Also, in the first iteration, the elastic collisions between 
1 thermal particles cancel in 5 ,  (but not in the derivatives), and 

it contains only the terms due to inelastic collisions between 

thermal particles and all collisions with non-thermal particles 

and photons. From the chosen starting point, Of: - 6 ;  = 0, and 

the f8 and then the 5, 0 0 can be expressed as functions of Ofg . 
The thermodynamic forces are in principle derivatives (or 

loqarithmic derivatives) of the thermodynamic parameters and the 

functions f g  with respect to the space and time variables, and 

the fields (6, 8 ,  and 8 ) .  However, they can be combined or 
expressed in terms of any independent set of variables. 

In order to obtain better numerical behavior it is useful to 

take advantage on the isotropy of the functions M a .  As we will 

show, this leads to some simplification in the first iteration. 

We suggest in consequence to split all distribution functions 

f a  and f B  in symmetric and antisymmetric parts with respect to 

the direction of each spatial coordinate, a direction that in 

each case will be designated as the z axis. 

If considering then, the domain of IJ restricted to the I 

interval (O,l), we have 

... . .  
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and 

f ( - l l )  = (fS(ll) - f a ( W  p 

The KE equations become 

OafS + OSfa = Sa 

and Osfs + Oafa = S s ,  

where the operator 0 is defined as before, 

S 
Y a  

F a S 
o s = c x  i a  +Bnxa+Bnya+--+--+--. a a FZ a Fx a 

c aPz c aP, c aPy 
X Y 

It is evident that the terms for the gravitational 

acceleration and the electric field forces are symmetric since 

they do not depend on particle velocity. On the other hand, the 

magnetic field force gives complicated expressions, while the 

component alonq z of its antisymmetric part vanishes 

P B  
S + ZeEx + Fx = mgx mcy ' 

S PxBz 
Y 

= mqY + ZeE y - -; mcy 

a PzBy 
Fx = - - ;  mcy 

( 3 4 )  



P B  - P B  
= mgZ + Z,E~ + * y  y x. , FZa = 0. 

mcy FZ 

At this point, we apply NR to solve eqs. (33), we find 

tA where the matrices A are defined by the derivatives (r) as 

before. We remark that the corrections apply also for the non- 

thermal particles, since their corresponding KE eqs. are affected 

by 6fa to some extent, resulting in f8 functions which are 

sliqhtly different from fS0 (the functions which satisfy the zero 

order KE eqs) . 
Equations (35) can be solved numerically by using a 

partition of the impulse space and expressing numerically the 

derivatives with respect to velocity and angles as well as the 

integrals over impulse space. 

The equations become greatly simplified in the first 

iteration, since €or the fluid rest frame ( 6  = 01, 

M i P aM a 
api mBT a 
- = - -  

3' being the impulse of the particle in an arbitrary reference 

frame with velocity 6'. 



28 

Eqs. ( 3 5 )  become 

OaMa = 5, a + A ,  6 f a  + A t  6 f s  

S a 6fa + A S  6fS OsMa = 5, + A, a 

0 = 0 + A: &fa  + A i  6fS 

0 = 0 + A i  6 f a  + A i  & f a .  
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VI. The S t a t i o n a r y  P l a n e  Parallel  C a s e  

We will consider the simple case when all gradients of TP 

and all the fields (6 ,  8 ,  8 )  are directed along the z axis and 
all derivatives with respect to time are zero. 

Following eqs, ( 3 7 1 ,  we have 

aln(na) - ;) + -1 alnT - - BN M F S 
O ~ M ~  = B I J M ~ [  az az kT a z 

a kT 

In these equations one can recognize the classical 

thermodynamic forces 

P = -  
2 

C xZ 

EZ = -  
xE e 

1 xu = c a z  

and the associated functions 
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Then, one can associate to each force a pair of functions 

6 f k ,  6 f E  which result from the solution of the equations 

0 

or 

0 

= Aa6ft + As6f:  , 

= As6ft + A a s  6 b  

plus the correspondinq equations for non-thermal particles and 

photons. The last equations can be eliminated by using them to 

calculate the 6fB values as functions of 6f, and then replacing 

6fB in the eqs, for thermal particles, 

If one performs numerically the integrals which define the 

transport phenomena in the hydrodynamic equations, it is possible 
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t o  d e f i n e  t h e  w e i g h t s  W c o r r e s p o n d i n g  t o  t h e  t r a n s p o r t  v a r i a b l e s  

as 

q = wa 6 f a  
Q ( 4 1 )  

a n d ,  o n e  can d e f i n e  t h e  t r anspor t  c o e f f i c i e n t s  nab  by o n e  o f  t h e  

f o l l o w i n q  e x p r e s s i o n s  

a s  -1 -1 a 
= Wa ( A S  - A A A') Qb 'ab a 

( 4 2 )  
= W z ( A s  - A a A s-l h a )  -1 Qb s 

'ab 

A 

= w ~ ( A ~  - A ' A ~  -1 ob, a 'ab 

a b e i n g  t h e  i n d e x  related t o  t h e  f l u x  c o n s i d e r e d ,  and  b t h e  i n d e x  

related t o  t h e  thermodynamic force i n v o l v e d .  

The p r e s e n t  method shows a n u m e r i c a l  way of c a l c u l a t i n q  

t h e s e  c l a s s i ca l  t r anspor t  c o e f f i c i e n t s .  Moreover, it shows how 

t o  d e f i n e  and  c a l c u l a t e  some n e w  c o e f f i c i e n t s  which appear d u e  t o  

t h e  i n t e r a c t i o n  of t h e r m a l  par t ic les  w i t h  non- the rma l  par t ic les  

a n d  w i t h  p h o t o n s .  
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Let us consider the photons, and to be consistent with the 

actual situation assume that their distribution function f, 

depends only on z and P. 

We will assume they interact with particles through 

Boltzmann type binary collisions, hence 

- a s a  a s  a fvS 
llaz - n, - x, f, - X "  f, 

For simplicity we consider a gas in which there are not non- 

thermal species, since at zeru order the coefficients xv and 'I" 

are symmetric: it results 

s os a f:a 
11- - - x, f, I az 

( 4 4 )  

which is the Feautrier form of the radiative transfer equations. 

In principle, by using eqs. ( 4 4 )  all the f:a and fzS 

functions can be expressed as functions of some thermodynamic 

forces, which we define as 

oa a l n  f, 
x2v = az 
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where  

IJ os = - -  oa 
s f u  x l v ’  

X V  

S 

a n d  fos = - “ U  - - IJ f oaX*u. 
U S S 

X U  X U  

One g e n e r a l  c h a r a c t e r i s t i c  of t h e  e q u a t i o n s  f o r  t h e r m a l  

pa r t i c l e s  is s e e n  d i r e c t l y  i n  t h e  D r e s e n t  c o n t e x t ,  v i z .  SOa 

depends o n l y  on Xlu s i n c e  a l l  i n i t i a l  d i s t r i b u t i o n  f u n c t i o n s  a r e  

symmet r i c ,  e x c e p t  t h a t  f o r  t h e  p h o t o n s .  Moreove r l  s i n c e  o n l y  

one-Dhoton processes a re  c o n s i d e r e d ,  t h a t  t e r m  is  l i n e a r  i n  Xlv 

a n d  can b e  e x p r e s s e d  a s  

x i  b e i n g  some c o e f f i c i e n t  dependen t  o n  t h e  Ma. 

T h i s  l e a d s  t o  t h e  d e f i n i t i o n  o f  t h e  t r a n s p o r t  c o e f f i c i e n t s  

assoc ia ted  w i t h  t h e  r a d i a t i o n  f l u x ,  a c c o r d i n g  t o  

w i t h  

S 
a ‘A f ; ~  Qlv‘ 

X V  

( 4 7 )  

S a 5, 
a f V  

( a  s i m p l e  e x p r e s s i o n  for x A  can be  o b t a i n e d  from-). 

T o  a n a l y z e  t h e  coef f ic ien ts  associated w i t h  t h e  f o r c e  X 2 ” ,  
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one can assume that the inelastic collision term can be written 

as 

S S where nA and x A  are coefficients depending on Ma. 

From this, we have 

The last eauation gives the definition of two sets of 

coefficients, one associated with the force X2,, 

S -1 a s  = $(As - A A Aa)" Q2v 
% 2 V  a 

S x i  oa 
Q 2 V =  D s  fV , 

X V  

and the second set associated with a third radiation force 

where rl: and x z  are the values of 11: and xi integrated over the 
impulse space. The corresponding 0 is 
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Considering the case where the elastic collision terms are 

much larger than the inelastic ones, and usinq eas. ( 4 0 1 ,  we can 

distinquish between two types of forces, those for which the 

associated 0 is antisymmetric and those for which Q is 

symmetric. The analysis shows that for antisymmetric forces the 

correction 6fS is of higher order than &fa, and the opposite 

holds for the symmetric forces. Following these considerations, 

one can write 

-1 
‘ab = w a  a As 0: 

and then, up to the first iteration the diffusion velocities and 

thermal conductive flux can be expressed as the summation of the 

product of some transport coefficients by the antisymmetric 

thermodynamic forces, and the stress tensor becomes linear in the 

symmetric thermodynamic forces. 
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VII. Conclusions 

We have presented the system of kinetic equations for a gas 

of particles and photons taking into account different forms of 

the collision terms. 

From these eauations we developed the hydrodynamic equations 

for the particles in a non-relativistic case without making 

assumptions regarding the distribution functions. These 

equations contain the fluxes of particles and particle impulses 

and energies in some linear and non-linear terms. 

The latter equations are useful in any situation, in LTE and 

P-LTE by making the equations to be solved simpler and even in 

the non-LTE case for checking the accurracy and consistency of 

the results obtained by numerical methods. 

We described a numerical method €or calculating the 

deDarture from maxwellian of the distribution function of the 

thermal particles in the p-LTE situation (the solution obtained 

also applies to LTE), and show that to first order it is linear 

in certain thermodynamic forces which we defined. 

From this departure one can calculate numerically the fluxes 

previously mentioned and then the transport coefficients we 

defined. These coefficients can be combined and compared with 

those defined by CC. They can also be used straightforwardly to 

calculate the fluxes of particles and thermal energy. 

From the present expressions some coefficients are defined 

which are new in astrophysics although well known in other areas 

of physics, namely those which describe the effects of radiation 

or non-thermal particles on thermal particles. 
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F u r t h e r m o r e ,  one o b t a i n s  t h e  d e t a i l e d  s h a p e  o f  t h e  f i r s t  

order d e p a r t u r e  f rom maxwel l i an  f and  o n e  is a b l e  t o  p e r f o r m  t h e  

n e x t  i t e r a t i o n  ( f o r  g i v e n  v a l u e s  o f  t h e  thermodynamic  f o r c e s )  

o b t a i n i n g  f ( 2 ) .  

By c o m p a r i n g  6 f a  w i t h  Ma and 6 f B  w i t h  f B  o n e  c a n  check  t h e  

v a l i d i t y  of t h e  h y p o t h e s i s  r e g a r d i n g  t h e  s m a l l n e s s  o f  t h e  

depar tures  and  t h e n  t h e  range of v a l i d i t y  o f  t h e  t r a n s p o r t  

c o e f f i c i e n t s .  

As a n  example  w e  show i n  F igs  1 and 2 t h e  v a l u e s  computed 

f o r  f / ( M u X )  f o r  some simple m o d e l  gases, f u l l y  i o n i z e d  hydrogen  

( F i g .  I ) ,  and  r i a i d  spheres  ( F i g .  2 )  u n d e r  some thermodynamic 

forces.  

I n  these f i q s .  one sees t h a t  f o r  a g i v e n  v a l u e  o f  X ,  a t  some 

v e l o c i t y  ( d e p e n d e n t  upon t h e  v a l u e  of X )  6 f a  becomes comparable 

w i t h  Ma.  

c r i t i c a l  v a l u e  ( B , ) ,  t h e  f i r s t  order  a p p r o a c h  does n o t  h o l d  and  

i m p o r t a n t  d e p a r t u r e s  from maxwel l i an  c a n  be  e x p e c t e d ,  i .e.  t h o s e  

C o n s e q u e n t l y ,  f o r  v e l o c i t i e s  qreater t h a n  a c e r t a i n  

p a r t i c l e s  w i t h  v e l o c i t i e s  g r e a t e r  t h a n  B c  

n o n - t h e r m a l  par t ic les .  

( B c  >>  B = (%) - ''2 ) ,  most of t h e  par t ic les  a re  t h e r m a l  and  

t h e  h i g h  v e l o c i t y  par t ic les  form t h e  so c a l l e d  non- the rma l  t a i l  

mus t  be  c o n s i d e r e d  a s  

I f  t h e  v a l u e  o f  B c  is large enough 
2 

T 

of t h e  d i s t r i b u t i o n .  

The l a s t  case can be t rea ted  a s  a p-LTE case, b u t  e v e n  when 

t h e  n o n - t h e r m a l  t a i l  c o n t a i n s  few pa r t i c l e s ,  t h e y  a r e  v e r y  

e n e r g e t i c  a n d  can p r o d u c e  i m p o r t a n t  e f f e c t s  ( f o r  i n s t a n c e  i n  t h e  

i o n i z a t i o n  of some e l e m e n t s  a s  w a s  shown by R o u s e l l - D u p r e e ,  

1 9 8 0 ) .  
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In another paper we will publish results already obtained by 

applying the present method to a partially ionized hydrogen gas, 

accounting for radiation in the Lyman continum. 

The inclusion of important magnetic fields (those which can 

affect the transport coefficients) requires a careful 

consideration of all the collision terms in the presence of the 

curved trajectories of charqed particles, and seems to be a very 

important but difficult topic, especially f o r  partially ionized 

gases. 



39 

JUAN M .  FONTENLA: E S 5 2 / M a r s h a l l  Space F l i g h t  

Huntsv i l l e ,  AL 3 5 8 1 2 ,  U . S . A .  



40 

REFERENCES 

Athay, R.G., 1972, Radiation Transport in Spectral Lines, 

(Holland: D. Reidel Pub. Co.). 

Anderson, J . L .  1976, Gen. Rel. Grav., 7 ,  53. 

Balescu, R. 1975, Eauilibrium and Nonequilibrium Statistical 

Mechanics (New York: J. Wiley & Sons). 

Braqinskii, S.I. 1965, Reviews of Plasma Physics New York: M. A. 

Leontovich Consultants Bureau), pp. 205-311. 

Campbell, P.M. 1984, Phys. Rev. A . ,  30, 365. 

Chapman, S., and Cowling, T.G. 1936, The Mathematical Theory of 

Non Uniform Gases (Cambridge: Cambridge Univ. Press). 

Devoto, R.S. 1966, Phys. Fluids, 9, 1230. 

Ehlers, J. ,  and Koher, E., 1977, J. Meth. Phys., 18, 2014. 

Epperlein, E.M., and Haines, M.G. 1986, Phys. Fluids, 29, 1029. 

Fontenla, J . M .  1985, Rev. Mexicana Astr. Astrof., 10, 413. 

Hochestim, A. R. 1967, Proceedinqs of the Eiqhth International 

Conference on Phenomena in Ionized Gases (Vienna: Springer), 

p. 304. 

Landau, L. 1936, Phys. 2. Sowj. Un., 10, 154. 

Lucinai, J.F., Mora, P., and Pellat, R. 1985, Phys. Fluids, 28, 

835. 

Mihalas, D. 1978, Stellar Atmospheres (San Francisco: Freeman). 

Nakagawa, V., and Wu, S. T., 1968, J. Quant. Spectrosc. Radiat. 

Transfer, 8, 555. 

Owocki, S. P. and Canfield, R. C. 1986, Ap. J., 300,  265. 

Roussell-Dupree, R. 1980, Solar Phys., 6 9 ,  243. 

Shoub, E. C. 1983, Ap. J., 266, 339. 



4 1  

S h v a r t s ,  D. , Delecttrez, J .  I Mac Crory, R . L .  , and Verdon, C.P. 

1981 ,  Phys .  Rev. Letters, 47, 2 4 7 .  

Spitzer, L . ,  and Harm, R .  1 9 5 3 ,  Phys .  Rev., 89, 977. 



b b  

42 

FIGURE CAPTIONS 

Fig. la. The departure from maxwellian (6fa/uM) of the 

electrons (full line) and protons (dashed line) 

distribution functions in a gas composed by electrons 

and protons, for unit logarithmic gradient of the 

pressure ( X p  = 1 cm -1 1. 

Fiq. lb. The same as Fig. la but for unit loqarithmic qradient 

of the temperature (at constant pressure) ( $  = 

1 cm''). The dash-dot line shows the SH results 

Fiq. IC. The same as Fig. l b  but for unit electric force (XE  = 

1 cm-l) . 

Fig. Id. The same as Fig. la but for unit radiation force (+ = 

1 cm'l) assuming radiation of wavelenath between 912 A 

and 304 A of mean intensity J, = WB, (TR) ( B v  being 

the Planck function). The values were taken as W = 1, 

TR = 10,000 K, and the logarithmic qradient of W equal 

1 cm-1. 

Fig. 2a. The departure from maxwellian (6fa/uM) in a gas 

composed by rigid spheres for unit loqarithmic 

gradient of the pressure ( X p  = 1 cm"). 

Fig. 2b. The same as Fig. 2a but for unit logarithmic gradient 

of the temperature (assuming constant pressure) <$ = 

1 cm-1). 


